
Problem Sheet 3, Part 1

Properties of convolution.

1. Show that for all arithmetic functions f, g and h we have

f ∗ (g + h) = f ∗ g + f ∗ h.

So ∗ is distributive over +.

2. Recall δ(n) = 1 if n = 1, 0 otherwise. Show that

f ∗ δ = δ ∗ f = f.

for all arithmetic functions f . Thus δ is the identity for ∗.

Connections between sq,Q2, µ2 and λ

3. Prove two results stated in lectures,

i) for all k ≥ 2, Qk = 1 ∗ µk,

ii) 2ω = 1 ∗Q2.

4. Define the arithmetic function sq by

sq(n) =

{

1 if n = m2 for some integer m, (i.e. n is a square),

0 otherwise.

So sq is the characteristic function of the square numbers.

i) Prove that
Dsq(s) = ζ(2s)

for Re s > 1/2.

ii) Recall from Example 3.29 in the notes that for Q2, the characteristic
function of square-free number,

∞
∑

n=1

Q2(n)

ns
=

ζ(s)

ζ(2s)
.
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Rearrange this equality and use Part i as

ζ(s) = ζ(2s)
∞
∑

n=1

Q2(n)

ns
=

∞
∑

n=1

sq(n)

ns

∞
∑

n=1

Q2(n)

ns
=

∞
∑

n=1

sq ∗Q2(n)

ns

by the composition of Dirichlet Series.

a) Why does this suggests that 1 = sq ∗Q2?

b) Prove this directly.

5. Show, by looking at Euler Product for the Left Hand side that,

∞
∑

n=1

λ(n)

ns
=

ζ(2s)

ζ(s)

for Re s > 1, where λ is Liouville’s function defined by λ(n) = (−1)Ω(n)

for all n ≥ 1.

6. From the Question 5

∞
∑

n=1

λ(n)

ns
= ζ(2s)

1

ζ(s)

=
∞
∑

n=1

sq(n)

ns

∞
∑

n=1

µ(n)

ns

by Question 4 and definition of µ,

=
∞
∑

n=1

sq ∗ µ(n)

ns
,

by the convolution of Dirichlet Series. This ‘suggests’ that λ = sq ∗ µ.
Prove this directly.

7. In the notes (or special case of Question 3) we have Q2 = 1 ∗ µ2. From
Question 6 λ = sq ∗ µ and, from Question 4ii, 1 = sq ∗ Q2. Use these
three results along with Möbius Inversion to prove

i) δ = Q2 ∗ λ,
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ii) δ = µ2 ∗ sq.

(Do not use the method of showing equality at prime powers.)

Since δ is the identity with respect to ∗ these results show that λ is

the inverse of Q2 and sq the inverse of µ2.

iii) What is 1 ∗ λ?

iv) What is µ2 ∗ λ?
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Problem Sheet 3, Part 2

Summing series

When studying the individual factors in the Euler Product of the
Dirichlet Series associated with an arithmetic function it is often nec-
essary to sum series.

8. Sum the following series, expressing your answers as positive and neg-
ative powers of terms of the form 1− ym for various m ≥ 1.

You need not worry about convergence.

i)

S1 = 1 + y + y2 + y3 + y4 + ...

S−1 = 1− y + y2 − y3 + y4 − ...

Hint The map from Sa → S−a is y → −y.

ii)

S2 = 1 + 2y + 2y2 + 2y3 + 2y4 + ...

S−2 = 1− 2y + 2y2 − 2y3 + 2y4 − ...

Hint Write S2 in terms of S1.

iii)

S3 = 1 + 2y + 3y2 + 4y3 + 5y4 + ...

S−3 = 1− 2y + 3y2 − 4y3 + 5y4 − ...

Hint Write S3 − S1 in terms of S3.

iv)

S4 = 1 + 3y + 5y2 + 7y3 + 9y4 + ...

S−4 = 1− 3y + 5y2 − 7y3 + 9y4 − ...

Hint Write S4 − S3 in terms of S3.
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v) Prove that

S5 = 1 + 22y + 32y2 + 42y3 + 52y4 + ... =
1− y2

(1− y)4
.

Evaluate
S−5 = 1− 22y + 32y2 − 42y3 + 52y4 − ...

Hint Consider S5 − S4.

vi)

S6 = 1 + y2 + y3 + y4 + y5 + ...

S−6 = 1 + y2 − y3 + y4 − y5 + ...

9. Factorise the Dirichlet series
∞
∑

n=1

λ(n) 2ω(n)

ns
,

where λ is Liouville’s function λ(n) = (−1)Ω(n) .

10. The results 2ω = 1 ∗Q2 and Q2 = 1 ∗ µ2 combine to give

2ω = d ∗ µ2.

i) Prove this by showing that we have equality on any power of a prime.

ii) Deduce that

a) d = sq ∗ 2ω.

b) 1 = λ ∗ 2ω.

Do not use the method of showing equality on prime powers, but rather
use all previous results along with Möbius Inversion.

11. i) Factor the Dirichlet series

∞
∑

n=1

d(n2)

ns
.

ii) Factor the Dirichlet series

∞
∑

n=1

λ(n) d(n2)

ns
.
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12. In lectures we define the arithmetic function g by g(n) = d(n2) for all
n ≥ 1. (This is non-standard notation) So the previous question can
be written as g = 1 ∗ 2ω.

Using this result from the last question prove that

i) g = d ∗Q2,

ii) g = d3 ∗ µ2,

iii) d = λ ∗ g,

iv) d3 = sq ∗ g.

(Do not use the method of showing equality at prime powers, but use
all previous results along with Möbius Inversion.)

13. Factor the Dirichlet series

∞
∑

n=1

λ(n) d2(n)

ns

14. Using d2 = 1 ∗ g prove that

i) d2 = d ∗ 2ω,

ii) d2 = d3 ∗Q2,

iii) d2 = d4 ∗ µ2,

iv) d4 = sq ∗ d2.

v) d3 = λ ∗ d2,

(Do not use the method of showing equality at prime powers, but use
all previous results along with Möbius Inversion.)
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Problem Sheet 3, Part 3

The arithmetic function q2, λq2, σ and φ

15. Define a square-full number to be one for which if p|n then p2|n. In
other words n is square-full iff n = pa11 pa22 ...parr with distinct primes
and ai ≥ 2 for all 1 ≤ i ≤ r. Let q2 be the characteristic function for
square-full numbers, so q2(n) = 1 if n is square-full, 0 otherwise.

i) Prove that
∞
∑

n=1

q2(n)

ns
=

ζ(2s) ζ(3s)

ζ(6s)

for Re s > 1/2.

Hint Look at the Euler Product of the Dirichlet Series on the left hand
side.

ii) Find a similar expression for

∞
∑

n=1

λ(n) q2(n)

ns

16. In the notes we have, by definition, σ = 1 ∗ j while we showed that
φ = µ∗j followed from the definition of φ. Use these two decompositions
to prove

i)

a)
∞
∑

n=1

σ(n)

ns
= ζ(s) ζ(s− 1) and b)

∞
∑

n=1

φ(n)

ns
=

ζ(s− 1)

ζ(s)

for Re s > 2.

ii)
a) φ ∗ σ = j ∗ j and b) d ∗ φ = σ.

Hint do not check equality of prime powers.
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17. Results from this question are used in the next Problem Sheet.

Prove, by showing that both sides of each expression are equal on prime
powers that

i)
φ

j
= 1 ∗

µ

j
, ii)

σ

j
= 1 ∗

1

j
and iii)

j

φ
= 1 ∗

Q2

φ
.

Hint If you can’t recall it, look back in the notes, but it suffices to
show that f(pa)− f(pa−1) = g(pa) for all a ≥ 1.

Note that if a = 1 then, since f is multiplicative, the condition that
needs to be checked is that f(p)− 1 = g(p).
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Problem Sheet 3, Part 4

A few final results.

18. Show, by looking at the Euler Products for the Left Hand Sides, that

i)
ζ(2)

ζ(3)
=

∏

p

(

1 +
1

p (p+ 1)

)

, ii)
ζ(2)

ζ(4)
=

∏

p

(

1 +
1

p2

)

,

iii)
ζ(3)

ζ(6)
=

∏

p

(

1 +
1

p3

)

, iv)
ζ(2) ζ(3)

ζ(6)
=

∏

p

(

1 +
1

p (p− 1)

)

.

19. Results from this question are used in the next Problem Sheet.

Using Euler Products show that

6

π2
=

∏

p

(

1−
1

p2

)

≤
φ(n) σ(n)

n2
≤ 1

for all n ≥ 1.

You may assume that
∑∞

n=1 1/n
2 = π2/6.

20. Prove that
∞
∑

m=1

∞
∑

n=1
gcd(m,n)=1

1

(mn)2
=

ζ2(2)

ζ(4)
.

In fact, it can be shown that the right hand side equals 5/2.

HintUse the arithmetic function δ to pick out the condition gcd (m,n) =
1. Then use Möbius Inversion on δ. This method was used in the notes
to prove that φ(n) =

∑

d|n µ(d)n/d.
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